Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Ray based model for the ultrasonic time-of-flight diffraction simulation of thin walled structure inspection
 
  • Details
Options

Ray based model for the ultrasonic time-of-flight diffraction simulation of thin walled structure inspection

Date Issued
01-08-2005
Author(s)
Baskaran, G.
Krishnan Balasubramanian 
Indian Institute of Technology, Madras
Krishnamurthy, C. V.
C Lakshmana Rao 
Indian Institute of Technology, Madras
DOI
10.1115/1.1989353
Abstract
It is necessary to size the cracklike defects accurately in order to extend the life of thin-walled (< 10 mm) components (such as pressure vessels) particularly for aerospace applications. This paper discusses the successful application of ray techniques to simulate the ultrasonic time-of-flight diffraction experiments for platelike structures. For the simulation, the diffraction coefficients are computed using the geometric diffraction theory. The A and B scans are simulated in near real time and the different experimental parameters can be interactively controlled due to the computational efficiency of the ray technique. The simulated results are applied to (1) defect signal identification for vertical defects, (2) inspection of inclined defects, and (3) study the effect of pulse width or probe frequency on experimental results. The simulated results are compared with laboratory scale experimental results. Copyright © 2005 by ASME.
Volume
127
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback