Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. Onset detection in composition items of Carnatic music
 
  • Details
Options

Onset detection in composition items of Carnatic music

Date Issued
01-01-2017
Author(s)
Sebastian, Jilt
Hema A Murthy 
Indian Institute of Technology, Madras
Abstract
Complex rhythmic patterns associated with Carnatic music are revealed from the stroke locations of percussion instruments. However, a comprehensive approach for the detection of these locations from composition items is lacking. This is a challenging problem since the melodic sounds (typically vocal and violin) generate soft-onset locations which result in a number of false alarms. In this work, a separation-driven onset detection approach is proposed. Percussive separation is performed using a Deep Recurrent Neural Network (DRNN) in the first stage. A single model is used to separate the percussive vs the non-percussive sounds using discriminative training and time-frequency masking. This is then followed by an onset detection stage based on group delay (GD) processing on the separated percussive track. The proposed approach is evaluated on a large dataset of live Carnatic music concert recordings and compared against percussive separation and onset detection baselines. The separation performance is significantly better than that of Harmonic- Percussive Separation (HPS) algorithm and onset detection performance is better than the state-of-the-art Convolutional Neural Network (CNN) based algorithm. The proposed approach has an absolute improvement of 18.4% compared with the detection algorithm applied directly on the composition items.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback