Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study
 
  • Details
Options

Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study

Date Issued
15-03-2019
Author(s)
Fuaad, P. A.
Arul Prakash, K. 
Indian Institute of Technology, Madras
DOI
10.1016/j.compfluid.2019.01.022
Abstract
Direct Numerical Simulation (DNS) studies of a fully developed turbulent channel flow are performed with sinusoidal surface texture to assess its ability to enhance turbulent skin-frictional drag reductions over superhydrophobic surfaces (SHS). The streamwise sinusoidal microgroove structure generates asymmetric secondary flows to induce an in-plane stationary distribution of spanwise velocity that oscillates in the streamwise direction. The transverse motions over a sinusoidal texture behave analogously to an existing drag-reduction technique by spanwise wall oscillations. The friction-drag levels and slip-lengths are precisely quantified for various streamwise wavelength configurations, and an optimum wavelength for the maximum reduction in turbulent drag is determined. The response of the near-wall turbulent structures to the sinusoidal microgrooves is also analysed. The transverse Stokes strain generates spanwise tilting in the near-wall streaks for large wavelengths, inducing an apparent drop in the wall-normal ejections and sweeps, thereby reducing the turbulent contribution to the wall-shear-stress. The transverse shear strain above the sinusoidal microgroove is demonstrated to be resembling a Stokes spatial layer (SSL), by comparing with existing analytical solutions of strain profiles for wall-forcing by spanwise spatial oscillations.
Volume
181
Subjects
  • Drag reduction

  • Flow control

  • Spatial stokes layer

  • Turbulence

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback