Options
A 2.8 mW/Gb/s, 14 Gb/s Serial Link Transceiver
Date Issued
01-05-2017
Author(s)
Indian Institute of Technology, Madras
Shu, Guanghua
Nandwana, Romesh Kumar
Talegaonkar, Mrunmay
Elkholy, Ahmed
Anand, Tejasvi
Choi, Woo Seok
Hanumolu, Pavan Kumar
Abstract
Design techniques to improve energy efficiency of serial link transceivers are presented. Power consumption is reduced by using: 1) low-power clock generation, recovery, and distribution schemes; 2) charge-based circuits to implement analog front-end and samplers/flip-flops; and 3) a partially segmented voltage-mode (VM) output driver. An LC-oscillator based digital phase-locked loop (PLL) is used to generate a low jitter clock that is shared between the transmitter (Tx) and receiver (Rx). The clock recovery unit uses a local ring-oscillator based PLL to reduce the number of phase interpolators and the amount of high-frequency clock distribution. Charge-based samplers that were shown to operate with limited return-to-zero voltage swings and consume only dynamic power are modified to provide non-return-to-zero outputs and used extensively in the deserializer and Rx front-end circuits. A partially segmented VM output driver with embedded 2-tap de-emphasis is proposed to reduce power consumption of pre-drivers. Fabricated in a 65 nm CMOS process, the 14 Gb/s transceiver prototype employs aforementioned techniques and achieves an energy efficiency of 2.8 mW/Gb/s. The Tx achieves a phase margin of 0.36 UI (BER = 10-12) at the end of an 11 dB loss channel with an energy efficiency of 0.89 mW/Gb/s. The Rx recovers clock with 1.8 psrms long term absolute jitter at BER < 10-12 and achieves an energy efficiency of 1.69 mW/Gb/s. The LC-oscillator based digital PLL achieves an integrated jitter of 0.605 psrms with an energy efficiency of 0.5 mW/GHz at 7 GHz output frequency.
Volume
52