Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. An expert system based on artificial neural network for predicting the tensile behavior of tailor welded blanks
 
  • Details
Options

An expert system based on artificial neural network for predicting the tensile behavior of tailor welded blanks

Date Issued
01-09-2009
Author(s)
Veera Babu, K.
Ganesh Narayanan, R.
Saravana Kumar, G.
DOI
10.1016/j.eswa.2009.02.044
Abstract
The forming behavior of tailor welded blanks (TWB) is influenced by thickness ratio, strength ratio, and weld conditions in a synergistic fashion. In most of the cases, these parameters deteriorate the forming behavior of TWB. It is necessary to predict suitable TWB conditions for achieving better-stamped product made of welded blanks. This is quite difficult and resource intensive, requiring lot of simulations or experiments to be performed under varied base material and weld conditions. Automotive sheet part designers will be greatly benefited if an 'expert system' is available that can deliver forming behavior of TWB for varied weld and blank conditions. This work primarily aims at developing an artificial neural network (ANN) model to predict the tensile behavior of welded blanks made of steel grade and aluminium alloy base materials. The important tensile characteristics of TWB are predicted within chosen range of varied blank and weld condition. Through out the work, PAM STAMP 2G® finite element (FE) code is used to simulate the tensile behavior and to generate output data required for training the ANN. Predicted results from ANN model are compared and validated with FE simulation for two different intermediate TWB conditions. It is observed that the results obtained from ANN are encouraging with acceptable prediction errors. An expert system framework is proposed using the trained ANN for designing TWB conditions that will deliver better formed TWB products. © 2009 Elsevier Ltd. All rights reserved.
Volume
36
Subjects
  • Artificial neural net...

  • Forming

  • Simulation

  • Tailor welded blanks

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback