Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Enhanced H<inf>2</inf>evolution through water splitting using TiO<inf>2</inf>/ultrathin g-C<inf>3</inf>N<inf>4</inf>: A type II heterojunction photocatalyst fabricated by in situ thermal exfoliation
 
  • Details
Options

Enhanced H<inf>2</inf>evolution through water splitting using TiO<inf>2</inf>/ultrathin g-C<inf>3</inf>N<inf>4</inf>: A type II heterojunction photocatalyst fabricated by in situ thermal exfoliation

Date Issued
30-08-2021
Author(s)
Khatun, Nasima
Dey, Sutapa
Appadurai, Tamilselvan
Aravind Kumar Chandiran 
Indian Institute of Technology, Madras
Somnath Chanda Roy 
Indian Institute of Technology, Madras
DOI
10.1063/5.0061923
Abstract
Designing a photocatalyst material with reduced recombination of photogenerated charges is one of the most important aspects of hydrogen generation through solar water splitting. Here, we report hydrogen generation using the TiO2/ultrathin g-C3N4 (U-g-CN) heterostructure fabricated using a unique in situ thermal exfoliation process. Multilayer g-CN is converted into U-g-CN having a high surface (∼190 m2/g) area by calcination at ∼550 °C through oxygen-induced exfoliation, which also forms a robust heterostructure with TiO2. In addition, the presence of g-CN also inhibits further growth of TiO2 nanoparticles, thereby retaining a high specific surface area. The presence of U-g-CN causes a redshift (∼0.13 eV) in the absorption edge of heterostructure compared to that of bare TiO2, which extends the light absorption capability. Addition of 40 wt. % of multilayer g-CN to TiO2 shows an enhanced H2 evolution rate, which is ∼15 times and ∼4 times higher compared to that of bare TiO2 and U-g-CN, respectively. Photoluminescence (PL) and time-resolved PL (TRPL) studies indicate a reduced recombination rate of photogenerated charge carriers with an increase in the average lifetime from 10.53 (TiO2) to 13.32 ns (TiO2/U-g-CN40). The interfacial charge transport characteristics studied through impedance spectroscopy reveal a reduced charge transfer resistance at the semiconductor-electrolyte interface, which facilitates faster charge separation due to the heterostructure formation. The band edge positions are estimated through flatband potential from the Mott-Schottky measurements and optical absorption data, indicating a type-II heterojunction. More light absorption and enhanced separation of photogenerated charges at the heterojunction interface lead to better photocatalytic H2 generation.
Volume
119
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback