Publication:
Equivariant Grothendieck ring of a complete symmetric variety of minimal rank

cris.virtual.author-orcid0000-0001-7696-0591
cris.virtual.departmentIndian Institute of Technology, Madras
cris.virtualsource.author-orcidcfee3f16-19c8-414f-abb6-3faacec4b776
cris.virtualsource.departmentcfee3f16-19c8-414f-abb6-3faacec4b776
dc.contributor.authorUma V
dc.date.accessioned2023-09-19T13:24:51Z
dc.date.available2023-09-19T13:24:51Z
dc.date.issued01-01-2023
dc.description.abstractWe describe the G-equivariant Grothendieck ring of a regular compactification X of an adjoint symmetric space G/H of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (2008)) and generalizes the results on the regular compactification of an adjoint semisimple group in (Uma, V. 12(2), 371-406 (2007)).
dc.identifier.doi10.1007/s00229-023-01495-2
dc.identifier.issn252611
dc.identifier.scopus2-s2.0-85164808118
dc.identifier.urihttps://apicris.irins.org/handle/IITM2023/17175
dc.relation.ispartofseriesManuscripta Mathematica
dc.sourceManuscripta Mathematica
dc.titleEquivariant Grothendieck ring of a complete symmetric variety of minimal rank
dc.typeJournal
dspace.entity.typePublication
oairecerif.author.affiliationIndian Institute of Technology, Madras
person.affiliation.cityChennai
person.affiliation.id60025757
person.affiliation.nameIndian Institute of Technology Madras
person.identifier.scopus-author-id55893103900
Files
Collections