Publication: Equivariant Grothendieck ring of a complete symmetric variety of minimal rank
cris.virtual.author-orcid | 0000-0001-7696-0591 | |
cris.virtual.department | Indian Institute of Technology, Madras | |
cris.virtualsource.author-orcid | cfee3f16-19c8-414f-abb6-3faacec4b776 | |
cris.virtualsource.department | cfee3f16-19c8-414f-abb6-3faacec4b776 | |
dc.contributor.author | Uma V | |
dc.date.accessioned | 2023-09-19T13:24:51Z | |
dc.date.available | 2023-09-19T13:24:51Z | |
dc.date.issued | 01-01-2023 | |
dc.description.abstract | We describe the G-equivariant Grothendieck ring of a regular compactification X of an adjoint symmetric space G/H of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (2008)) and generalizes the results on the regular compactification of an adjoint semisimple group in (Uma, V. 12(2), 371-406 (2007)). | |
dc.identifier.doi | 10.1007/s00229-023-01495-2 | |
dc.identifier.issn | 252611 | |
dc.identifier.scopus | 2-s2.0-85164808118 | |
dc.identifier.uri | https://apicris.irins.org/handle/IITM2023/17175 | |
dc.relation.ispartofseries | Manuscripta Mathematica | |
dc.source | Manuscripta Mathematica | |
dc.title | Equivariant Grothendieck ring of a complete symmetric variety of minimal rank | |
dc.type | Journal | |
dspace.entity.type | Publication | |
oairecerif.author.affiliation | Indian Institute of Technology, Madras | |
person.affiliation.city | Chennai | |
person.affiliation.id | 60025757 | |
person.affiliation.name | Indian Institute of Technology Madras | |
person.identifier.scopus-author-id | 55893103900 |