Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. On distance matrices of helm graphs obtained from wheel graphs with an even number of vertices
 
  • Details
Options

On distance matrices of helm graphs obtained from wheel graphs with an even number of vertices

Date Issued
15-07-2021
Author(s)
Goel, Shivani
DOI
10.1016/j.laa.2021.03.008
Abstract
Let n≥4. The helm graph Hn on 2n−1 vertices is obtained from the wheel graph Wn by adjoining a pendant edge to each vertex of the outer cycle of Wn. Suppose n is even. Let D:=[dij] be the distance matrix of Hn. In this paper, we first show that det(D)=3(n−1)2n−1. Next, we find a matrix L and a vector u such that D−1=−[Formula presented]L+[Formula presented]uu′. We also prove an interlacing property between the eigenvalues of L and D.
Volume
621
Subjects
  • Circulant matrices

  • Distance matrices

  • Helm graphs

  • Laplacian matrices

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback