Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Dynamic fracture toughness of coated structural components at different temperatures
 
  • Details
Options

Dynamic fracture toughness of coated structural components at different temperatures

Date Issued
01-12-2012
Author(s)
Manjunath, G. L.
Surendran Sankunny 
Indian Institute of Technology, Madras
DOI
10.1115/OMAE2012-83224
Abstract
Fracture toughness is a material property in the same sense that yield strength is a material property. The determination of fracture toughness for dynamic loading conditions is not very straight-forward, as dynamic crack growth speed in supersonic speed and the speed range is 1 to 2 km/sec. The improvement of fracture toughness of metals plays a vital role in the design and manufacturing of structural components. To achieve this purpose, industries rely up on coatings which are an integral part of manufacturing. These coated samples are tested by Charpy V-notch impact testing for estimating dynamic fracture toughness. These coatings improve the wear and corrosion resistance of the materials and they tend to reduce the strength of the materials, because of the increased residual stresses due to the coating process. These defects cannot be precluded from these coated and treated components. The strength of those components in the presence of such defects can be analyzed by fracture mechanics approach. An attempt has been made to analyze the effect of coating methods like electroplating and PVD (Physical Vapour Deposition), coating thickness, heat treatment and the service temperature on the fracture behaviour of metals. The experiments have been carried out on EN8 steel and aluminium for different temperatures. The specimen preparation and experimentations were carried out according to the ASTM standard E-23. The FRANC 2D (Fracture Analysis Code) has been relied upon for estimating the stress intensity factor at different crack length and temperature. Copyright © 2012 by ASME.
Volume
6
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback