Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. Statistical methods to compare the texture features of machined surfaces
 
  • Details
Options

Statistical methods to compare the texture features of machined surfaces

Date Issued
01-01-1996
Author(s)
Venkat Ramana, K.
Ramamoorthy, B.
DOI
10.1016/0031-3203(96)00008-8
Abstract
Texture studies play a paramount role in many image processing applications. In this paper an attempt is made to study the textural features of machined surfaces (grinding, milling and shaping) using the most widely used statistical methods, viz. co-occurrence matrix approach, the amplitude varying rate statistical approach (AVRS) and the run length matrix approach. Textural features derived from these matrices are studied and analysed. A new matrix for the qualitative evaluation of surfaces, namely the gray-level difference-pixel distance matrix, is presented and its usefulness in texture analysis is analysed. The features calculated from these matrices are correlated with surface parameters, such as roughness, and the different features are studied for classification of these surfaces. Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd.
Volume
29
Subjects
  • AVRM

  • Co-occurrence

  • Machined surfaces

  • Run length

  • Textures

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback