Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Recordable haptic textures
 
  • Details
Options

Recordable haptic textures

Date Issued
01-01-2006
Author(s)
Vasudevan, Hari
Muniyandi Manivannan 
Indian Institute of Technology, Madras
DOI
10.1109/HAVE.2006.283779
Abstract
Abstract - In this paper we present a method to record the surface texture of real life objects like metal files, sandpaper etc. These textures can subsequently be played back on virtual surfaces. Our method has the advantage that it can record textures using commonly available haptic hardware. We use the 3DOF SensAble PHANToM® to record the textures. The algorithm involves creating recordings of the frequency content of a real surface, by exploring it with a haptic device. We estimate the frequency spectra at two different velocities, and subsequently interpolate between them on a virtual surface. The extent of correlation between real and simulated spectra was estimated and a near exact spectral match was obtained. The simulated texture was played back using the same haptic device. The algorithm to record and playback textures is simple and can be easily implemented for planar surfaces with uniform textures. © 2006 IEEE.
Subjects
  • FFT

  • Haptics

  • PHANToM

  • Signal processing

  • Textures

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback