Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Experimental and numerical investigations of two-phase (liquid-liquid) flow behavior in rectangular microchannels
 
  • Details
Options

Experimental and numerical investigations of two-phase (liquid-liquid) flow behavior in rectangular microchannels

Date Issued
20-01-2010
Author(s)
Reddy Cherlo, Siva Kumar
Kariveti, Sreenath
S Pushpavanam 
Indian Institute of Technology, Madras
DOI
10.1021/ie900555e
Abstract
The interaction between kinetics and mass-transfer effects is determined by the flow regime in liquid-liquid multiphase microreactors. The operating conditions under which the various flow regimes such as slug flow and stratified flow occur in liquid-liquid systems has not been extensively studied and is not well-understood. The effect of operating conditions on slug length for instance is not well-known. The present study focuses on microreactors fabricated in Perspex (poly(methyl methaacrylate) (PMMA)), which are essentially microchannels with a rectangular cross-section. Experiments are carried out for a wide range of flow rates, channel sizes, and fluid systems with varying properties. Two different kinds of flow regimes, slug flow and stratified flow, are experimentally observed, and these are predicted using numerical simulations. We divide the space of operating conditions (the two liquid flow rates) into different regions such that in each region the flow regime is distinct. The dependence of slug length on flow rates and other parameters such as channel size, viscosity, surface tension, and contact angle have been determined and are quantitatively compared with predictions of simulations. © 2010 American Chemical Society.
Volume
49
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback