Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Facile composite engineering to boost thermoelectric power conversion in ZnSb device
 
  • Details
Options

Facile composite engineering to boost thermoelectric power conversion in ZnSb device

Date Issued
01-07-2023
Author(s)
Theja, Vaskuri C.S.
Karthikeyan, Vaithinathan
Nayak, Sanjib
Kandira, Kadir Ufuk
Assi, Dani S.
Kannan, Venkataramanan
Roy, Vellaisamy A.L.
DOI
10.1016/j.jpcs.2023.111329
Abstract
Zinc antimonide (ZnSb) is one of the alternatives for commercial thermoelectric materials due to its non-toxic, low-cost, and earth-abundant nature. However, its simple crystal structure causes strong phonon vibrations, which enhance lattice thermal conductivity. In this work, we systematically studied the effect of γ-Al2O3 nano-inclusions on ZnSb. Our results show that composite engineering imparts lattice phonon scattering for reduced thermal conductivity and low-energy carrier filtering for enhanced Seebeck coefficient. The obtained figure of merit in the ZnSb+5% γ-Al2O3 sample at 673 K is nearly two-fold higher than the pristine sample. Our fabricated 2-leg ZnSb+5% γ-Al2O3 device displayed a power generation of 0.11 μW at ΔT of 200 °C. Furthermore, adding γ-Al2O3 nano-inclusions improve the mechanical and thermal stabilities due to grain boundary hardening and dispersion strengthening. Overall, the addition of γ-Al2O3 nano-inclusions to ZnSb enhancing the Seebeck coefficient, reducing thethermal conductivity, and improving mechanical and thermal stability significantly.
Volume
178
Subjects
  • Nano-inclusion

  • Phonon scattering

  • Thermal conductivity

  • ZnSb

  • γ-Al O 2 3

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback