Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. Numerical study of hydrodynamics in gas-solid reactors operating within bubbling fluidisation regime
 
  • Details
Options

Numerical study of hydrodynamics in gas-solid reactors operating within bubbling fluidisation regime

Date Issued
01-01-2017
Author(s)
Sahu, Akhilesh Kumar
Vasudevan Raghavan 
Indian Institute of Technology, Madras
Prasad, B. V.S.S.S.
DOI
10.1504/PCFD.2017.084349
Abstract
Hydrodynamics of dense gas-solid flows is investigated computationally using Euler-Euler methodology. The method used is primarily based on the kinetic theory of granular flow (KTGF) and additionally by incorporating the features of frictional pressure models (FPM). Frictional stresses are accounted when solid volume fraction reaches the frictional packing limit (FPL). Investigations on the effects of bed pressure drop and other gas-solid flow characteristics have revealed that a value for frictional packing limit around 0.61 yields better results. It is also found that the FPM affects the bed hydrodynamics up to a superficial gas velocity of around 1.5 times the minimum fluidisation velocity. The numerical results of bed pressure drop and bed expansion ratio are validated against the corresponding experimental data available in literature. Detailed velocity and voidage profiles are reported along with the contours of solid volume fraction, and velocity vectors of gas and solid phases.
Volume
17
Subjects
  • Bubbling fluidisation...

  • Dense gas-solid flows...

  • FPL

  • FPM

  • Frictional packing li...

  • Frictional pressure m...

  • Minimum fluidisation ...

  • Superficial gas veloc...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback