Options
Spectral Ground Motion Models for Himalayas Using Transfer Learning Technique
Journal
Journal of Earthquake Engineering
ISSN
13632469
Date Issued
2024-01-01
Author(s)
Abstract
Predicting robust earthquake spectra is challenging, especially for data sparse regions such as India. Often, alternatives to the traditional data-driven regression analysis are used to develop empirical models for such regions. Advancing these efforts, the present study aims at exploring an alternative machine learning technique called Transfer learning, wherein a non-parametric deep neural network is trained for response (Sa) and Fourier spectra (FAS) of Himalayas, which uses network parameters that were derived for a large comprehensive database (NGA-West2). While the FAS is derived using magnitude, distance, focal depth, and site class, the Sa is scaled using FAS and significant duration.
Subjects