Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Effect of blade leading-edge microcylinder in a Wells turbine used for wave energy converters
 
  • Details
Options

Effect of blade leading-edge microcylinder in a Wells turbine used for wave energy converters

Date Issued
01-08-2023
Author(s)
Sadees, P.
Madhan Kumar, P.
Abdus Samad 
Indian Institute of Technology, Madras
DOI
10.1007/s40722-022-00277-4
Abstract
The present study attempts to enhance a Wells turbine performance by adopting a leading-edge microcylinder (LEM) as a passive flow control device. The microcylinder is placed near the blade leading edge so that its axis lies on the chord line of the rotor blade. The influence of turbine performance, due to parameters such as microcylinder diameter and the distance between the cylinder and the blade leading edge, is evaluated by solving the steady Reynolds-averaged Navier–Stoke (RANS) equations with the k-ω SST turbulence model. The performance parameters of the microcylinder rotor were compared with the reference rotor. It was found that the pair of counter-rotating and co-rotating vortices shed from the microcylinder feed kinetic energy to the separated flow and re-energize the boundary layer. This phenomenon delays the flow separation and enhances the operating range. Moreover, a parametric investigation of the microcylinder rotor reveals that the diameter and space between the microcylinder and the rotor blade are instrumental in delaying flow separation. It was found that a cylinder diameter equal to 0.02C (C is blade chord) and a distance between the leading edge and the micro cylinder equal to 0.035C resulted in increases in the working range and in the average torque equal to about 22% and 49%, respectively.
Volume
9
Subjects
  • Leading-edge microcyl...

  • OWC

  • Passive flow control

  • WEC

  • Wells turbine

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback