Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Phase Inversion of Ellipsoid-Stabilized Emulsions
 
  • Details
Options

Phase Inversion of Ellipsoid-Stabilized Emulsions

Date Issued
22-06-2021
Author(s)
Kumar, Hemant
Dugyala, Venkateshwar Rao
Basavaraj Madivala Gurappa 
Indian Institute of Technology, Madras
DOI
10.1021/acs.langmuir.1c00456
Abstract
The efficacy of anisotropic particles in Pickering emulsion stabilization, attributed to shape-induced capillary interactions, is well-documented in the literature. In this contribution, we show that the surface of hematite ellipsoids can be modified in situ by the addition of oleic acid to effect transitional phase inversion of Pickering emulsions. Interestingly, incorporation of oleic acid results in the formation of nonspherical emulsion drops. The phase inversion of oil-in-water to water-in-oil and the transition in shape of emulsion drops from spherical to nonspherical is observed in two different particle systems, namely, nanoellipsoids and microellipsoids. The surface of spherical emulsion drops stabilized by particles or particles along with high concentration of oleic acid is found to consist of ellipsoids arranged in a close-packed configuration with their major axis parallel to the interface. In contrast, at intermediate oleic acid concentration, the surface of nonspherical emulsion drops is observed to be covered with loosely packed particle monolayer, with the ellipsoids at the oil/water interface taking up many different orientations. Using contact angle goniometry, the change in the wettability of hematite particles due to adsorption of oleic acid is established to be the mechanism responsible for the phase inversion of Pickering emulsions.
Volume
37
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback