Options
Receding Nonlinear Kalman (RNK) Filter for Nonlinear Constrained State Estimation
Date Issued
20-06-2011
Author(s)
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Kuppuraj, Vidyashankar
Abstract
State estimation is an important problem in process operations. For linear dynamical systems, Kalman Filter (KF) results in optimal estimates. Chemical engineering problems are characterized by nonlinear models and constraints on the states. Nonlinearities in these models are handled effectively by the Extended Kalman Filter (EKF), whereas constraints pose more serious problems. Several constrained estimation problems where the EKF approach fails have been reported in the literature. To address this issue, receding horizon approaches such as the Moving Horizon Estimation (MHE) have been proposed. The MHE approach has been shown to provide the most reliable estimates in several example problems; albeit at a high computational price. Unlike the KF, the MHE formulation does not use an explicit predictor-corrector approach. In this paper, we study the following questions in nonlinear constrained state estimation: (i) can the EKF be extended to include a receding horizon in a simple intuitive fashion? (ii) are there any performance gains over an EKF due to a receding horizon? and, (iii) are there any computational gains over the standard MHE through such an extension? A Receding Nonlinear Kalman (RNK) Filter formulation is proposed to answer these questions. The RNK formulation follows a predictor-corrector approach and uses linearization of the state space model for covariance calculation much like the EKF approach. We demonstrate through examples that inclusion of a receding horizon improves performance over the standard EKF approach. We also discuss the computational properties of RNK in comparison with MHE. © 2011 Elsevier B.V.
Volume
29