Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication12
  4. Fermi and Coulomb correlated relativistic local-density method for atoms
 
  • Details
Options

Fermi and Coulomb correlated relativistic local-density method for atoms

Date Issued
01-01-1989
Author(s)
Vijayakumar, M.
Vaidehi, N.
Gopinathan, M. S.
DOI
10.1103/PhysRevA.40.6834
Abstract
A parameter-free local-density method called the Ξ method was developed earlier for atoms [N. Vaidehi and M. S. Gopinathan, Phys. Rev. A 29, 1679 (1984)]. This method, which considered only the Fermi correlation in the potential, was shown to be close to Hartree-Fock accuracy. Its relativistic extension [V. Selvaraj and M. S. Gopinathan, Phys. Rev. A 29, 3007 (1984)] was also shown to give results that were close to Dirac-Hartree-Fock accuracy. In the present article, the relativistic Ξ method is modified by incorporating the spin-orbit interaction term in the Hamiltonian and the Coulomb correlation between the electrons of opposite spin. Using this fully correlated relativistic method, total energy, expectation values of rn (n=-1,1,2), and spin-orbit parameters for various atoms are calculated. Correlation energies for all the atoms in the Periodic Table are reported. Ionization energy and electron affinity of atoms are also discussed. © 1989 The American Physical Society.
Volume
40
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback