Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Impact of COVID-19 pandemic on road safety in Tamil Nadu, India
 
  • Details
Options

Impact of COVID-19 pandemic on road safety in Tamil Nadu, India

Date Issued
01-01-2022
Author(s)
Paramasivan, Kandaswamy
Nandan Sudarsanam 
Indian Institute of Technology, Madras
DOI
10.1080/17457300.2021.2007134
Abstract
This study uses structured literature mapping to review worldwide trends in traffic safety following the phenomenon of the COVID-19 pandemic. Motivated by dissimilar findings globally and a lack of evidence from emerging nations which have been significantly more affected by road traffic crashes, the study examines the impact of the pandemic-induced lockdown on road traffic deaths and injuries in Tamil Nadu, India. Using a holistic approach, methods such as ARIMA, Holt-Winters, Bayesian Structural Time Series, and Generalized Additive Model are employed for counterfactual prediction, to draw a causal inference of lockdown on traffic safety. In line with global studies, a substantial reduction in traffic crashes, injuries, and fatalities during lockdowns has been found. However, the comparison of relative differences shows that the number of grievous injuries reduced more than minor injuries, crashes, or fatalities. Furthermore, these relative differences were sustained even when metrics returned to normalcy in the post-lockdown phases. Further spatial stratification at two levels (cities and districts) shows that the macroscopic state-level trends are also broadly seen in the sub-units. This validates the consistency of trends across rural–urban differences and shows that, despite variations in the degree of enforcement of the lockdown within Chennai city, contrary to expectation, increased police presence did not have a differential impact on road crashes.
Volume
29
Subjects
  • Bayesian inference

  • counterfactual predic...

  • lockdown

  • Pandemic

  • road crashes

  • traffic safety

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback