Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method
 
  • Details
Options

Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method

Date Issued
01-11-2015
Author(s)
Periyannan, Suresh
Krishnan Balasubramanian 
Indian Institute of Technology, Madras
DOI
10.1063/1.4935556
Abstract
A novel technique for simultaneously measuring the moduli of elastic isotropic material, as a function of temperature, using two ultrasonic guided wave modes that are co-generated using a single probe is presented here. This technique can be used for simultaneously measuring Young's modulus (E) and shear modulus (G) of different materials over a wide range of temperatures (35°C-1200°C). The specimens used in the experiments have special embodiments (for instance, a bend) at one end of the waveguide and an ultrasonic guided wave generator/detector (transducer) at the other end for obtaining reflected signals in a pulse-echo mode. The orientation of the transducer can be used for simultaneously generating/receiving the L(0,1) and/or T(0,1) using a single transducer in a waveguide on one end. The far end of the waveguides with the embodiment is kept inside a heating device such as a temperature-controlled furnace. The time of flight difference, as a function of uniform temperature distribution region (horizontal portion) of bend waveguides was measured and used to determine the material properties. Several materials were tested and the comparison between values reported in the literature and measured values were found to be in agreement, for both elastic moduli (E and G) measurements, as a function of temperature. This technique provides significant reduction in time and effort over conventional means of measurement of temperature dependence of elastic moduli.
Volume
86
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback