Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Study of exciton-polaron interaction in pentacene field effect transistors using high sensitive photocurrent measurements
 
  • Details
Options

Study of exciton-polaron interaction in pentacene field effect transistors using high sensitive photocurrent measurements

Date Issued
14-10-2019
Author(s)
Kesavan, Haripriya
Sahoo, Subhamoy
Jena, Sanjoy
Manda, Prashanth Kumar
Baranwal, Amogh Kumar
Dutta, Soumya 
Indian Institute of Technology, Madras
Bhattacharyya, Jayeeta 
Indian Institute of Technology, Madras
Ray, Debdutta 
Indian Institute of Technology, Madras
DOI
10.1063/1.5116412
Abstract
Luminescence quenching in the presence of polarons is one of the major challenges in organic light emitting devices. In this work, exciton quenching in the presence of polarons is studied using phase sensitive photocurrent measurements on pentacene field effect transistors. The enhancement of conduction in the organic field effect transistors on light illumination is studied using photocurrent spectral response measurements and corresponding optical simulations. The photocurrent is shown to be governed by the polaron mobility and the exciton quenching efficiency, both of which depend on the polaron density in the channel. Two models are proposed on the exciton dynamics in the presence of gate induced polarons in the transistor channel. The first model simulates the steady-state exciton concentration profile in the presence of exciton-polaron interaction. The second one is a three-dimensional steady state exciton-polaron interaction model, which supports the findings from the first model. It is shown that the excitons quench by transferring its energy to polarons, thereby promoting the latter to high energy states in the density of states manifold. The polarons move in the higher energy states with greater microscopic mobility before thermalizing, thereby leading to an enhancement of conduction. It is observed that for the present system, where charge carrier transport is by hopping, all polarons interact with excitons. This implies that for low mobility systems, the interaction is not limited to deep trapped polarons.
Volume
126
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback