Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Combining multiple evidence for video classification
 
  • Details
Options

Combining multiple evidence for video classification

Date Issued
01-12-2005
Author(s)
Suresh, Vakkalanka
Mohan, C. Krishna
Kumaraswamy, R.
Yegnanarayana, B.
DOI
10.1109/ICISIP.2005.1529446
Abstract
In this paper, we investigate the problem of video classification into predefined genre, by combining the evidence from multiple classifiers. It is well known in the pattern recognition community that the accuracy of classification obtained by combining decisions made by independent classifiers can be substantially higher than the accuracy of the individual classifiers. The conventional method for combining individual classifiers weighs each classifier equally (sum or vote rule fusion). In this paper, we study a method that estimates the performances of the individual classifiers and combines the individual classifiers by weighing them according to their estimated performance. We demonstrate the efficacy of the performance based fusion method by applying it to classification of short video clips (20 seconds) into six popular TV broadcast genre, namely cartoon, commercial, news, cricket, football, and tennis. The individual classifiers are trained using different spatial and temporal features derived from the video sequences, and two different classifier methodologies, namely Hidden Markov Models (HMMs) and Support Vector Machines (SVMs). The experiments were carried out on more than 3 hours of video data. A classification rate of 93.12% for all the six classes and 97.14% for sports category alone has been achieved, which is significantly higher than the performance of the individual classifiers. ©2005 IEEE.
Volume
2005
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback