Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. Improved planning and filtering algorithm for task-priority redundancy resolution in mobile manipulation
 
  • Details
Options

Improved planning and filtering algorithm for task-priority redundancy resolution in mobile manipulation

Date Issued
01-01-2017
Author(s)
Govindan, Nagamanikandan
Thondiyath, Asokan
DOI
10.5220/0006402002470253
Abstract
Discrete time implementation of task-priority redundancy resolution using closed loop inverse kinematics with fixed sampling time may lead to discretization chatter. The chattering effect is due to switching between different closed loop behaviours whenever the corresponding external event has occurred. This effect causes high frequency oscillation with finite frequency and amplitude in both joint space motion and operational space motion which is highly undesired. In this paper, we propose a planning and filtering algorithm to improve the robustness of task-priority redundancy resolution without having the effect of chattering, while combining multiple closed loop behaviours. We also show how the null space projection in task- priority control affects the operational space motion while switching between the behaviours. To demonstrate the effectiveness of the proposed algorithm, three different case studies are presented for a planar mobile manipulator with holonomic constraint. The results confirm that the proposed algorithm eliminates the chatter and moves the end effector on a smooth trajectory.
Volume
2
Subjects
  • Behavioural control

  • CLIK

  • Inverse kinematics

  • Mobile manipulator

  • Path planning

  • Redundancy resolution...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback