Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites
 
  • Details
Options

Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites

Date Issued
01-01-2015
Author(s)
Mohan, Y.
Jayendiran, R.
Arockiarajan, A.
DOI
10.1117/12.2082698
Abstract
1-3 piezocomposites are very attractive materials in underwater and biomedical applications. These materials may be subjected to high electric field (2kV/mm) under continuous operation leading to deterioration in the output parameters such as remnant, saturation polarization and strain. Hence in this work, an experimental study is carried out to understand the fatigue behavior of 1-3 piezocomposites for various fiber volume fraction subjected to cyclic electric field (2kV/mm, 50Hz) up to 106 cycles. A uni-Axial micro-mechanical model is developed to predict the fatigue behaviour of 1-3 piezocomposite. The novelty of this model is, the remnant polarization and strain are chosen as internal variables which is also dependent on the damage.The simulated results are compared with the experimental observations, it is observed that the proposed micro-mechanical model is able to predict the material degradation with increase in number of cycles of operation. A parametric study is also conducted for various fiber volume fraction of 1-3 piezocomposite as function of fatigue cycle it shows that the amplitude of dielectric hysteresis and butterfly loop decreases with increase in the number of cycles. The fatigue behavior has a substantial effect in the performance parameters such as coercive field, remnant polarization and the asymmetric strain behavior of 1-3 piezocomposite. This fatigue study explores the utilities of 1-3 piezocomposites in transducer applications by providing insight into the device design.
Volume
9432
Subjects
  • 1-3 piezocomposites

  • Damage

  • Electrical fatigue

  • Micro-mechanical mode...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback