Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. The role of the basal ganglia in exploratory behavior in a model based on reinforcement learning
 
  • Details
Options

The role of the basal ganglia in exploratory behavior in a model based on reinforcement learning

Date Issued
01-01-2004
Author(s)
Devarajan, Sridharan
Prashanth, P. S.
V Srinivasa Chakravarthy 
Indian Institute of Technology, Madras
DOI
10.1007/978-3-540-30499-9_10
Abstract
We present a model of basal ganglia as a key player in exploratory behavior. The model describes exploration of a virtual rat in a simulated "water pool" experiment. The virtual rat is trained using a reward-based or reinforcement learning paradigm which requires units with stochastic behavior for exploration of the system's state space. We model the STN-GPe system as a pair of neuronal layers with oscillatory dynamics, exhibiting a variety of dynamic regimes like chaos, traveling waves and clustering. Invoking the property of chaotic systems to explore a state space, we suggest that the complex "exploratory" dynamics of STN-GPe system in conjunction with dopamine-based reward signaling present the two key ingredients of a reinforcement learning system. © Springer-Verlag Berlin Heidelberg 2004.
Volume
3316
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback