Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Majority logic formulations for parallel adder designs at reduced delay and circuit complexity
 
  • Details
Options

Majority logic formulations for parallel adder designs at reduced delay and circuit complexity

Date Issued
01-10-2017
Author(s)
Pudi, Vikramkumar
Sridharan, K. 
Indian Institute of Technology, Madras
Lombardi, Fabrizio
DOI
10.1109/TC.2017.2696524
Abstract
The design of high-performance adders has experienced a renewed interest in the last few years; among high performance schemes, parallel prefix adders constitute an important class. They require a logarithmic number of stages and are typically realized using AND-OR logic; moreover with the emergence of new device technologies based on majority logic, new and improved adder designs are possible. However, the best existing majority gate-based prefix adder incurs a delay of 2log2 (η) 1 (due to the nth carry); this is only marginally better than a design using only AND-OR gates (the latter design has a 2log2 (η) 1 gate delay). This paper initially shows that this delay is caused by the output carry equation in majority gate-based adders that is still largely defined in terms of AND-OR gates. In this paper, two new majority gate-based recursive techniques are proposed. The first technique relies on a novel formulation of the majority gate-based equations in the used group generate and group propagate hardware; this results in a new definition for the output carry, thus reducing the delay. The second contribution of this manuscript utilizes recursive properties of majority gates (through a novel operator) to reduce the circuit complexity of prefix adder designs. Overall, the proposed techniques result in the calculation of the output carry of an n-bit adder with only a majority gate delay of log2 (η) 1. This leads to a reduction of 40percent in delay and 30percent in circuit complexity (in terms of the number of majority gates) for multi-bit addition in comparison to the best existing designs found in the technical literature.
Volume
66
Subjects
  • Adder

  • arithmetic complexity...

  • carry

  • emerging technologies...

  • majority voting logic...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback