Options
Study of e+e- →π+Ï€-Ï€0ηc and evidence for Zc (3900)± decaying into Ï Â±Î·c STUDY of e+e- →π+Ï€-Ï€0ηc ... M. ABLIKIM et al.
Date Issued
24-12-2019
Author(s)
Ablikim, M.
Achasov, M. N.
Ahmed, S.
Albrecht, M.
Alekseev, M.
Amoroso, A.
An, F. F.
An, Q.
Bai, Y.
Bakina, O.
Baldini Ferroli, R.
Ban, Y.
Begzsuren, K.
Bennett, D. W.
Bennett, J. V.
Berger, N.
Bertani, M.
Bettoni, D.
Bianchi, F.
Boyko, I.
Briere, R. A.
Cai, H.
Cai, X.
Calcaterra, A.
Cao, G. F.
Cetin, S. A.
Chai, J.
Chang, J. F.
Chang, W. L.
Chelkov, G.
Chen, G.
Chen, H. S.
Chen, J. C.
Chen, M. L.
Chen, P. L.
Chen, S. J.
Chen, Y. B.
Cheng, W.
Cibinetto, G.
Cossio, F.
Dai, H. L.
Dai, J. P.
Dbeyssi, A.
Dedovich, D.
Deng, Z. Y.
Denig, A.
Denysenko, I.
Destefanis, M.
De Mori, F.
Ding, Y.
Dong, C.
Dong, J.
Dong, L. Y.
Dong, M. Y.
Dou, Z. L.
Du, S. X.
Duan, P. F.
Fan, J. Z.
Fang, J.
Fang, S. S.
Fang, Y.
Farinelli, R.
Fava, L.
Feldbauer, F.
Felici, G.
Feng, C. Q.
Fritsch, M.
Fu, C. D.
Fu, Y.
Gao, X. L.
Gao, Y.
Gao, Y. G.
Gao, Z.
Garzia, I.
Gilman, A.
Goetzen, K.
Gong, L.
Gong, W. X.
Gradl, W.
Greco, M.
Gu, L. M.
Gu, M. H.
Gu, S.
Gu, Y. T.
Guo, A. Q.
Guo, L. B.
Guo, R. P.
Guo, Y. P.
Guskov, A.
Haddadi, Z.
Han, S.
Hao, X. Q.
Harris, F. A.
He, K. L.
Heinsius, F. H.
Held, T.
Heng, Y. K.
Holtmann, T.
Hou, Z. L.
Hu, H. M.
Abstract
We study the reaction e+e-→π+π-π0ηc for the first time using data samples collected with the BESIII detector at center-of-mass energies s=4.226, 4.258, 4.358, 4.416, and 4.600 GeV. Evidence of this process is found and the Born cross section σB(e+e-→π+π-π0ηc), excluding e+e-→ωηc and ηηc, is measured to be (46-11+12±10) pb at s=4.226 GeV. Evidence for the decay Zc(3900)±→ρ±ηc is reported at s=4.226 GeV with a significance of 3.9σ, including systematic uncertainties, and the Born cross section times branching fraction σB(e+e-→π Zc(3900)±)×B(Zc(3900)±→ρ±ηc) is measured to be (48±11±11) pb, which indicates that e+e-→π Zc(3900)±→πρ±ηc dominates the e+e-→π+π-π0ηc process. The Zc(3900)±→ρ±ηc signal is not significant at the other center-of-mass energies and the corresponding upper limits are determined. In addition, no significant signal is observed in a search for Zc(4020)±→ρ±ηc with the same data samples. The ratios RZc(3900)=B(Zc(3900)±→ρ±ηc)/B(Zc(3900)±→π±J/ψ) and RZc(4020)=B(Zc(4020)±→ρ±ηc)/B(Zc(4020)±→π±hc) are obtained and compared with different theoretical interpretations of the Zc(3900)± and Zc(4020)±.
Volume
100