Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Path attestation scheme to avert DDoS flood attacks
 
  • Details
Options

Path attestation scheme to avert DDoS flood attacks

Date Issued
14-06-2010
Author(s)
Bhattacharjee, Raktim
Sanand, S.
Raghavan, S. V.
DOI
10.1007/978-3-642-12963-6_32
Abstract
DDoS mitigation schemes are increasingly becoming relevant in the Internet. The main hurdle faced by such schemes is the "nearly indistinguishable" line between malicious traffic and genuine traffic. It is best tackled with a paradigm shift in connection handling by attesting the path. We therefore propose the scheme called "Path Attestation Scheme" coupled with a metric called "Confidence Index" to tackle the problem of distinguishing malicious and genuine traffic in a progressive manner, with varying levels of certainty. We support our work through an experimental study to establish the stability of Internet topology by using 134 different global Internet paths over a period of 16 days. Our Path Attestation Scheme was able to successfully distinguish between malicious and genuine traffic, 85% of the time. The scheme presupposes support from a fraction of routers in the path. © 2010 Springer-Verlag.
Volume
6091 LNCS
Subjects
  • Cascaded filters

  • DDoS mitigation

  • Unspoofable identity

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback