Options
Power-based methods for infinite-dimensional systems
Date Issued
01-01-2015
Author(s)
Kosaraju, Krishna Chaitanya
Indian Institute of Technology, Madras
Abstract
In this chapter we aim to extend the Brayton Moser (BM) framework for modeling infinite-dimensional systems. Starting with an infinite-dimensional port- Hamiltonian system we derive a BM equivalent which can be defined with respect to a non-canonical Dirac structure. Based on this model we derive stability and new passivity properties for the system. The state variables in this case are the “effort” variables and the storage function is a “power-like” function called the mixed potential. The new property is derived by “differentiating” one of the port variables. We present our results with the Maxwell’s equations, and the transmission line with non-zero boundary conditions as examples.
Volume
461