Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size
 
  • Details
Options

Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size

Date Issued
30-08-2012
Author(s)
Wasekar, Nitin P.
Prathap Haridoss 
Indian Institute of Technology, Madras
Seshadri, S. K.
Sundararajan G 
Indian Institute of Technology, Madras
DOI
10.1016/j.wear.2012.08.003
Abstract
In the present study the sliding wear behavior of pulse electrodeposited nanocrystalline Ni coatings as a function of grain size including bulk annealed Ni has been systematically studied using pin-on-disc configuration against the WC-Co counter body. The sliding wear has been analyzed with respect to wear rate, coefficient of friction, subsurface deformation and composition of wear debris. The result indicates that the sliding wear rate and coefficient of friction of Ni decreases with decreasing grain size. The subsurface beneath the worn pin surface is composed of a near surface shear region and beneath it a region of bulk plastic deformation. The ratio of the depth of the shear region to the depth of bulk deformed region decreases with decreasing grain size indicating a greater localization of near surface deformation with decreasing grain size. © 2012 Elsevier B.V.
Volume
296
Subjects
  • Electrochemistry

  • Hardness

  • Sliding wear

  • Surface analysis

  • Wear testing

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback