Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Identification of the structural state in automated modular construction
 
  • Details
Options

Identification of the structural state in automated modular construction

Date Issued
01-01-2019
Author(s)
Harichandran, A.
Raphael, B. 
Indian Institute of Technology, Madras
Mukherjee, A.
DOI
10.22260/isarc2019/0026
Abstract
Automated construction involves complex interactions between machines and humans. Unless all possible scenarios involving construction and equipment are carefully evaluated, it may lead to failure of the structure or may cause severe accidents. Hence monitoring of automated construction is very important and sensors should be deployed for obtaining information about the actual state of the structure and the equipment. However, interpreting data from sensors is a great challenge. In this research, a methodology has been developed for monitoring in automated construction. The overall methodology involves a combination of traditional model-based system identification and machine learning techniques. The scope of this paper is limited to the machine learning module of the methodology. The efficacy of this approach is tested and evaluated using experiments involving the construction of a steel structural frame with one storey and one bay. The construction is carried out by a top-to-bottom method. During the construction of the frame, 99 base cases of normal operations are involved. 158 base cases of possible failures have been enumerated. Failure cases involve, for example, certain lifting platforms moving faster than others, improper connections of joints, etc. Strain gauges and accelerometers are installed on the structure and the data from these sensors are used to determine possible failure scenarios. Preliminary results indicate that machine learning has good potential for identifying activities and states in automated construction.
Subjects
  • Automated Constructio...

  • Machine Learning

  • Structural Monitoring...

  • System Identification...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback