Publication:
Fractal Convolution on the Rectangle

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-4494-0331
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentIndian Institute of Technology, Madras
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidb0628ef7-47b1-44de-a721-86500a464178
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentb0628ef7-47b1-44de-a721-86500a464178
dc.contributor.authorPasupathi, R.
dc.contributor.authorNavascués, M. A.
dc.contributor.authorArya Kumar Bedabrata Chand
dc.date.accessioned2023-09-19T14:22:24Z
dc.date.available2023-09-19T14:22:24Z
dc.date.issued01-06-2022
dc.description.abstractThe primary goal of this article is devoted to the study of fractal bases and fractal frames for L2(I× J) , the collection of all square integrable functions on the rectangle I× J. The fractal function when recognized as an internal binary operation paved way for the construction of right and left partial fractal convolution operators on L2(I) , for any real compact interval I. The aforementioned operators defined on one dimensional space have been applied to obtain operators on the space L2(I× J) by the identification of L2(I× J) with the tensor product space L2(I) ⊗ L2(J). In this paper, we establish properties of this bounded linear operator which eventually helps to prove that L2(I× J) admits Bessel sequences, Riesz bases and frames consisting of products of fractal (self-referential) functions in a nice way.
dc.identifier.doi10.1007/s11785-022-01227-6
dc.identifier.issn16618254
dc.identifier.scopus2-s2.0-85127530819
dc.identifier.urihttps://apicris.irins.org/handle/IITM2023/27237
dc.relation.ispartofseriesComplex Analysis and Operator Theory
dc.sourceComplex Analysis and Operator Theory
dc.subjectFractal convolution
dc.subjectFractal functions
dc.subjectFractal operators
dc.subjectFrames
dc.subjectHilbert Spaces
dc.subjectSchauder bases
dc.subjectTensor Product
dc.titleFractal Convolution on the Rectangle
dc.typeJournal
dspace.entity.typePublication
oaire.citation.issue4
oaire.citation.volume16
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliationIndian Institute of Technology, Madras
person.affiliation.cityChennai
person.affiliation.cityZaragoza
person.affiliation.id60025757
person.affiliation.id60025316
person.affiliation.nameIndian Institute of Technology Madras
person.affiliation.nameEscuela de Ingeniería y Arquitectura, Universidad de Zaragoza
person.identifier.scopus-author-id57217134502
person.identifier.scopus-author-id6602293090
person.identifier.scopus-author-id55757784257
Files
Collections