Publication: Fractal Convolution on the Rectangle
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | 0000-0002-4494-0331 | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | Indian Institute of Technology, Madras | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | b0628ef7-47b1-44de-a721-86500a464178 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | b0628ef7-47b1-44de-a721-86500a464178 | |
dc.contributor.author | Pasupathi, R. | |
dc.contributor.author | Navascués, M. A. | |
dc.contributor.author | Arya Kumar Bedabrata Chand | |
dc.date.accessioned | 2023-09-19T14:22:24Z | |
dc.date.available | 2023-09-19T14:22:24Z | |
dc.date.issued | 01-06-2022 | |
dc.description.abstract | The primary goal of this article is devoted to the study of fractal bases and fractal frames for L2(I× J) , the collection of all square integrable functions on the rectangle I× J. The fractal function when recognized as an internal binary operation paved way for the construction of right and left partial fractal convolution operators on L2(I) , for any real compact interval I. The aforementioned operators defined on one dimensional space have been applied to obtain operators on the space L2(I× J) by the identification of L2(I× J) with the tensor product space L2(I) ⊗ L2(J). In this paper, we establish properties of this bounded linear operator which eventually helps to prove that L2(I× J) admits Bessel sequences, Riesz bases and frames consisting of products of fractal (self-referential) functions in a nice way. | |
dc.identifier.doi | 10.1007/s11785-022-01227-6 | |
dc.identifier.issn | 16618254 | |
dc.identifier.scopus | 2-s2.0-85127530819 | |
dc.identifier.uri | https://apicris.irins.org/handle/IITM2023/27237 | |
dc.relation.ispartofseries | Complex Analysis and Operator Theory | |
dc.source | Complex Analysis and Operator Theory | |
dc.subject | Fractal convolution | |
dc.subject | Fractal functions | |
dc.subject | Fractal operators | |
dc.subject | Frames | |
dc.subject | Hilbert Spaces | |
dc.subject | Schauder bases | |
dc.subject | Tensor Product | |
dc.title | Fractal Convolution on the Rectangle | |
dc.type | Journal | |
dspace.entity.type | Publication | |
oaire.citation.issue | 4 | |
oaire.citation.volume | 16 | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | Indian Institute of Technology, Madras | |
person.affiliation.city | Chennai | |
person.affiliation.city | Zaragoza | |
person.affiliation.id | 60025757 | |
person.affiliation.id | 60025316 | |
person.affiliation.name | Indian Institute of Technology Madras | |
person.affiliation.name | Escuela de IngenierÃa y Arquitectura, Universidad de Zaragoza | |
person.identifier.scopus-author-id | 57217134502 | |
person.identifier.scopus-author-id | 6602293090 | |
person.identifier.scopus-author-id | 55757784257 |