Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication15
  4. Elucidating the role of interface of Cu-Co hybrid metal oxide for oxygen reduction reaction in Zn-air batteries
 
  • Details
Options

Elucidating the role of interface of Cu-Co hybrid metal oxide for oxygen reduction reaction in Zn-air batteries

Journal
Surfaces and Interfaces
ISSN
24680230
Date Issued
2024-03-01
Author(s)
Mahato, Debashis
Praveen, Aswin
Nivedha, L. K.
Gurusamy, Tamilselvi
Ramanujam, Kothandaraman 
Haridoss, Prathap 
Thomas, Tiju 
DOI
10.1016/j.surfin.2024.103924
Abstract
Energy security and sustainable energy are becoming more crucial in the current situation. As a result, fuel cells and metal-air batteries have recently received a lot of interest. However, these devices' main drawbacks are the slowness of the oxygen reduction reaction (ORR) and the expense of the catalyst. The necessity for high-performance noble-metal-free electrocatalysts is therefore urgent. This paper describes a CuOx-Co3O4-based heterostructure with nitrogen-doped carbon support (Cu/CuOx-Co3O4/NC-700) as an effective, durable, inexpensive ORR catalyst. The catalyst exhibits good ORR activity with a half-wave potential of 0.81 V vs. RHE with a 6.5 mA cm−2 limiting current density. The observed ORR performances are comparable with benchmark Pt/C catalysts. The Zn-air battery (ZAB), utilizing the synthesized Cu/CuOx-Co3O4/NC-700 catalyst, produces a high open circuit voltage (OCV) of 1.41 V. The catalyst also exhibits a superior specific capacity of 820 mAh gZn−1 and a higher peak power density of 103 mW cm−2. Cu/CuOx-Co3O4 and NC have a strong synergistic impact and are responsible for the enhanced ORR activity. Hence, Cu/CuOx-Co3O4 heterostructures introduced oxygen vacancies, high surface area, desirable charge transfer, and unsaturated chemical bonds in the interface to create a charge redistribution. As a result, the catalytic activity has improved significantly.
Volume
46
Subjects
  • Cu-Co oxides | Electr...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback