Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Instability mechanisms in a low-Mach-number reacting flow from coupled convection-reaction-diffusion equations
 
  • Details
Options

Instability mechanisms in a low-Mach-number reacting flow from coupled convection-reaction-diffusion equations

Date Issued
01-07-2015
Author(s)
Pulikkottil, V. V.
Raman I Sujith 
Indian Institute of Technology, Madras
DOI
10.1063/1.4923233
Abstract
In this paper, instability mechanisms in a low Mach number reacting flow are investigated. Here, the emphasis is on the growth or decay of acoustic oscillations which arise from the acoustic-hydrodynamic interaction in a low Mach number reacting flow. Motivated by the studies in magnetohydrodynamics and atmospheric flows, we propose to investigate the acoustic-hydrodynamic coupling as a system of wave-mean flow interaction. For example, a comparison with the heat fluctuation modified hydrodynamics associated with magnetohydrodynamics is useful in understanding this coupling. The wavelike acoustic disturbance is introduced here as a compressibility correction to the mean flow. Accounting for the multiple scales introduced by the weak compressibility, we derive a set of equations governing wave-mean flow interaction in a reacting low Mach number flow. Sources such as volume expansion (which, in atmospheric flows arises due to the density variation with altitude) occur in reacting flows due to the heat release rate. This heat release rate, when coupled with the acoustic field, often leads to self-sustained thermo-acoustic oscillations. In the study of such oscillations, we discover a relation between the acoustic pressure and second order thermal fluctuations. Further, using this relation, we discover the nonlinear coupling mechanism that would lead to self-sustained oscillations in a reacting low Mach number flow. This mechanism, represented by a coupled convection reaction diffusion system, is presented here for the first time. In addition to the acoustic pressure and temperature fields, we also discover the role of acoustic velocity field in the acoustic-hydrodynamic interaction through a convective and lift-up mechanism.
Volume
27
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback