Options
Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping
Date Issued
01-05-2014
Author(s)
Shyam Kumar, C. N.
Bauri, Ranjit
Abstract
Effect of co-doping Yb, Gd and Ce in scandia stabilized zirconia (SSZ) on the phase stability, high temperature aging behavior and ionic conductivity was studied. Both binary (10 mol% SSZ) and the ternary (co-doped) compositions were found to be in single cubic phase in the as-processed condition. However, the binary composition exhibited the rhombohedral 'β' phase after sintering whereas the ternary compositions remained in the single cubic phase. The sintered pellets were aged at 900 C for 500 h in air to study the phase stability at high temperature. Transmission electron microscopy revealed that the aged samples of Yb and Gd co-doped compositions contain small amount of the tetragonal phase which resulted in considerable degradation in conductivity (more than 20%). The Ce co-doped sample, on the other hand, was in single cubic phase after aging and this ensured that conductivity reduction was minimal in this composition. The co-doped samples however, showed higher conductivity before and after aging compared to the binary composition. The rhombohedral 'β' phase was absent in all the co-doped ternary compositions even after high temperature aging. © 2014 Elsevier Ltd.
Volume
75