Options
Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas
Date Issued
01-05-2009
Author(s)
Von Maltzahn, Geoffrey
Park, Ji Ho
Agrawal, Amit
Bandaru, Nanda Kishor
Indian Institute of Technology, Madras
Sailor, Michael J.
Bhatia, Sangeeta N.
Abstract
Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t 1/2, ∼17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as ∼2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation. © 2009 American Association for Cancer Research.
Volume
69