Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Multi-Patch Aggregation Models for Resampling Detection
 
  • Details
Options

Multi-Patch Aggregation Models for Resampling Detection

Date Issued
01-05-2020
Author(s)
Lamba, Mohit
Mitra, Kaushik 
Indian Institute of Technology, Madras
DOI
10.1109/ICASSP40776.2020.9053005
Abstract
Images captured nowadays are of varying dimensions with smartphones and DSLR's allowing users to choose from a list of available image resolutions. It is therefore imperative for forensic algorithms such as resampling detection to scale well for images of varying dimensions. However, in our experiments we observed that many state-of-the-art forensic algorithms are sensitive to image size and their performance quickly degenerates when operated on images of diverse dimensions despite re-training them using multiple image sizes. To handle this issue, we propose two novel deep neural networks-Iterative Pooling Network (IPN), which does not assume any prior information about the original image size, and Branched Network (BN), which uses this prior knowledge to produce better results. IPN adopts a novel iterative pooling strategy that converts tensors of multiple sizes to tensors of a fixed size, as required by deep learning models with fully connected layers. BN alternatively adopts a branched architecture with dedicated pathways for images of different sizes. The effectiveness of the proposed solution is demonstrated on two problems, resampling detection and photorealism detection, which are generally solved as independent problems with different deep learning models. The code is available at https://github.com/MohitLamba94/Iterative-Pooling.
Volume
2020-May
Subjects
  • photo-realsim detecti...

  • pooling

  • Post JPEG resampling ...

  • variable image dimens...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback