Options
Models for strength prediction of foam concrete
Date Issued
01-03-2008
Author(s)
Nambiar, E. K.Kunhanandan
Indian Institute of Technology, Madras
Abstract
There are several strength prediction relations developed for plain cement paste, mortar and concrete. In concrete where air voids contribute significantly to volume of voids (like aerated and foam concrete), more general expressions including the volume of air voids is to be developed as the better alternative. The objective of this paper is to propose prediction relations for the compressive strength of foam concrete by extending two of the well-known relations available for cement paste, mortar and normal concrete, viz., Balshin's strength-porosity model and Power's gel-space ratio equation. For this, theoretical equations were derived for porosity and gel-space ratio relating it to the density, proportion of ingredients in the mix and material characteristics like specific gravity. Foam concrete with fly ash showed lesser dependency on pore parameters than cement-sand mixes. As both the prediction relations developed in this study consider the effect of composition on the strength, it can serve as a simple tool for predicting the strength of foam concrete. But strength-porosity model stands out compared to gel-space model as it correlates well with the measured strength and also because of its ease in application since it employs the composition of constituents and easily measurable parameters. © 2007 RILEM has copyright.
Volume
41