Publication: The Labile Nature of Air Stable Ni(II)/Ni(0)-phosphine/Olefin Catalysts/Intermediates: EDA-NOCV Analysis

Date
04-10-2022
Authors
Kartik Chandra Mondal
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Metal ions-based inorganic-organic hybrid composites are often reported acting as good to excellent catalysts with various substrate scopes under milder reaction conditions. The active catalyst of a catalytic cycle is sometimes proposed to be a short-lived reactive intermediate species. A three coordinate (L−Me)Ni(II) intermediate species [L−Me=O2N donor dianionic ligand] can bind with short-lived carbene-ester ligands to produce four coordinate Ni(II) species which can act as carbene transfer intermediate under suitable reaction conditions for C−H functionalization and/or cyclopropanation reactions. The dissociation of phosphine (PPh3) from the Ni(II) centre of (L−Me)Ni(II)(PPh3) (1 a) and binding of short lived carbene esters (:CR1−CO2R2; R1=H, Ph; R2=aliphatic group; 2–4 and other carbenes; 5–10) to Ni(II) rationalize the phenomenon in solution. Air stable Ni(0)-olefin complexes/intermediates (12–18) have recently been shown to mediate a variety of organic transformations. This analysis will further help organic/organometallic chemists to rationalize the design and synthesis of future catalysts for organic transformation. EDA-NOCV calculations have been performed to shed light on the stability and bonding of those species. Additionally, our analysis provides a proper reason why the analogous (L−Me)Pd−PPh3 complex (1 b) does not dissociate in solution and hence, a similar catalytic product has not been isolated from identical reaction conditions. The stability and the labile nature of Ni(II/0) complexes have been investigated by state-of-the-art EDA-NOCV analyses.
Description
Keywords
DFT calculations, EDA-NOCV, Ni-carbene intermediate, Ni-phosphine/olefin catalyst, QTAIM