Publication:
Calcium binding studies of peptides of human phospholipid scramblases 1 to 4 suggest that scramblases are new class of calcium binding proteins in the cell

Placeholder Image
Date
01-10-2009
Authors
A Gopala Krishna
Sathyanarayana N Gummadi
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
Background: Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown. Methods: In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1-4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry. Results: The results in this study show that (i) affinities of the peptides are in the order hPLSCR1 > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families. Conclusions: Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif. General significance: Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function. © 2009 Elsevier B.V. All rights reserved.
Description
Keywords
Calcium binding, Isothermal titration calorimetry, Peptides, Phospholipids, Scramblase, Tryptophan fluorescence
Citation
Collections