Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Comparison of microstructure, mechanical and wear behaviour of laser cladded stainless steel 410 substrate using stainless steel 420 and Colmonoy 5 particles
 
  • Details
Options

Comparison of microstructure, mechanical and wear behaviour of laser cladded stainless steel 410 substrate using stainless steel 420 and Colmonoy 5 particles

Date Issued
01-12-2020
Author(s)
Jeyaprakash, N.
Yang, Che hua
Ramkumar, K. R.
Sui, Guang zhou
DOI
10.1007/s42243-020-00447-4
Abstract
Stainless steel (SS) 410 is widely used in many components of nuclear reactors due to its good corrosion resistance and high strength. However, wear is a major issue of these components due to its continuous sliding. SS 420 and Colmonoy 5 particles were deposited over SS 410 substrate by laser cladding process. Then, X-ray diffraction was used to find the phases present after cladding process. Further, coating morphologies were analysed by scanning electron microscopy (SEM) twinned with energy-dispersive spectroscopy. The obtained morphology indicates the hard laves phase present in the Colmonoy 5 cladding surface and needle-like structure in SS 420 cladding surface. Then, Vickers microhardness test was carried out in order to study the hardness and load-carrying capacity of the cladding specimen. Among those, Colmonoy 5 cladding specimen provide higher hardness due to the presence of laves phase formation. Then, the dry sliding wear study was conducted to calculate the mass loss after 2500 m of sliding. The combined effect of hardness and laves phase formation were reflected in dry sliding wear study analysis of the specimens. Then, to study the wear mechanism and roughness, worn surface morphologies were captured using SEM and white light interferometer, respectively.
Volume
27
Subjects
  • Colmonoy 5

  • Laser cladding

  • Laves phase

  • Mechanism

  • Roughness

  • Stainless steel (SS) ...

  • Stainless steel (SS) ...

  • Wear behaviour

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback