Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. A novel approach to composite propellant combustion modeling with a new Heterogeneous Quasi One-dimensional (HeQu1-D) framework
 
  • Details
Options

A novel approach to composite propellant combustion modeling with a new Heterogeneous Quasi One-dimensional (HeQu1-D) framework

Date Issued
01-01-2016
Author(s)
Varunkumar S 
Indian Institute of Technology, Madras
Zaved, M.
Mukunda, H. S.
DOI
10.1016/j.combustflame.2016.07.031
Abstract
This paper is concerned with a new and novel approach to modeling composite propellant burn rate behavior. It is founded on the fact that composite propellant combustion is largely boxed between the premixed limits – of pure AP and fine AP-binder (HTPB, here) whose burn behaviors are taken as known. The current strategy accounts for particle size distribution using the burn time averaging approach. The diffusional effects are accounted for through a calibrated heterogeneous quasi-one-dimensional model (HeQu1-D for short) that allows for the flame temperature dependence on the local AP size-binder thickness geometry. Fine AP-binder homogenization is adopted as in recent models with refinement on the particle size as a function of pressure. The specialty of the present approach is that it invokes local extinction for fuel rich conditions for specific particle sizes when the heat balance causes the surface temperature to drop below the low pressure deflagration limit of AP; this feature allows for the prediction of extinction of propellant combustion. Combining these ideas into a MATLAB®calculation framework that uses a single dataset on properties of AP and binder consistent with burn rate vs. pressure of pure AP and fine AP-binder system allows for making the predictions of propellants with multiple particle sizes and different fractions. Comparisons of burn rate data over nearly thirty compositions from different sources appear excellent to good. It is found that it is important to treat the full particle size distribution to achieve better predictions. Low burn rate index (∼0.25) observed with addition of SrCO3is captured by extending the model to include the effect of binder melt; the gas phase effect is accounted for by calibration against catalytic effect on the fine AP-binder propellant. An interesting deduction from the model is that the temperature sensitivity of propellants should not exceed that of AP. The robustness of the current model and speed of determining the burn rate behavior allow for the possibility of determining the particle size distribution required to meet the burn rate specifications of a specific propellant for practical applications before actually embarking on making the propellant.
Volume
173
Subjects
  • AP/HTPB composite pro...

  • Extinction

  • Heterogeneity

  • Modeling

  • Serial burning

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback