Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
 
  • Details
Options

Competence guided model for casebase maintenance

Date Issued
01-01-2017
Author(s)
Mathew, Ditty
Sutanu Chakraborti 
Indian Institute of Technology, Madras
DOI
10.24963/ijcai.2017/691
Abstract
A competence guided casebase maintenance algorithm retains a case in the casebase if it is useful to solve many problems and ensures that the casebase is highly competent. In this paper, we address the compositional adaptation process (of which single case adaptation is a special case) during casebase maintenance by proposing a case competence model for which we propose a measure called retention score to estimate the retention quality of a case. We also propose a revised algorithm based on the retention score to estimate the competent subset of a casebase. We used synthetic datasets to test the effectiveness of the competent subset obtained from the proposed model. We also applied this model in a tutoring application and analyzed the competent subset of concepts in tutoring resources. Empirical results show that the proposed model is effective and overcomes the limitation of footprintbased competence model in compositional adaptation applications.
Volume
0
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback