Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Self-Transport and Manipulation of Aqueous Droplets on Oil-Submerged Diverging Groove
 
  • Details
Options

Self-Transport and Manipulation of Aqueous Droplets on Oil-Submerged Diverging Groove

Date Issued
16-10-2018
Author(s)
Dhiman, S.
Jayaprakash, K. S.
Iqbal, R.
Sen, A. K. 
Indian Institute of Technology, Madras
DOI
10.1021/acs.langmuir.8b01889
Abstract
We report experimental study of self-transport of aqueous droplets along an oil-submerged diverging groove structure. The migration phenomenon is illustrated, and the effect of various parameters such as droplet size d, oil layer thickness h, groove angle 2θ, and groove thickness δ on the droplet transport behavior (i.e., migration velocity and length) is investigated. Our study reveals that complete engulfment of aqueous droplets in the oil layer, that is attributed to a positive spreading parameter (S > 0), is a prerequisite for the droplet transport. The results show that only droplets of diameter larger than the oil layer thickness (i.e., d ≥ h) get transported owing to a differential Laplace pressure between the leading and trailing faces of a droplet because of the diverging groove. Using experimental data, the variation of droplet migration velocity with distance along the diverging groove is correlated as U(x) = ψx-0.9, where ψ = d0.32θ-2.2h-1.5δ0.7. The submerged groove structure was used to demonstrate simultaneous and sequential coalescence and transport of multiple droplets. Finally, the submerged groove structure was employed for extraction of aqueous droplets from oil. The proposed technique opens up a new avenue for evaporation and contamination free transport and coalescence of droplets for chemical and biological applications.
Volume
34
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback