Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Updating the coupling algorithm between HYDRUS and MODFLOW in the HYDRUS package for MODFLOW
 
  • Details
Options

Updating the coupling algorithm between HYDRUS and MODFLOW in the HYDRUS package for MODFLOW

Date Issued
01-02-2018
Author(s)
Beegum, Sahila
Šimůnek, Jiří
Szymkiewicz, Adam
Sudheer, K. P. 
Indian Institute of Technology, Madras
Nambi, Indumathi M. 
Indian Institute of Technology, Madras
DOI
10.2136/vzj2018.02.0034
Abstract
The HYDRUS-based flow package for MODFLOW (the HPM or the HYDRUS pack-age) is an existing unsaturated zone flow package for MODFLOW. In MODFLOW with the HPM, the groundwater modeling domain is discretized into regular grids that can be combined into multiple zones based on similarities in soil hydrology, topographical characteristics, and the depth to the groundwater. Each of these zones is assigned one unsaturated soil profile (the HPM profile). In this model, after every MODFLOW time step, the flux at the bottom of the HPM profile is given as an input recharge flux to MODFLOW. MODFLOW simulates groundwater flow, and the water table depth at the end of the MODFLOW time step is assigned as the bottom boundary condition in the HPM profile. The current coupling algorithm assumes that the groundwater table in the HPM profile remains constant throughout the entire MODFLOW time step. This results in unrealistic sudden inflow and/or outflow fluxes at the bottom of the HPM profile after every time step. The objective of this study was to develop a methodology to eliminate the error in the determination of the recharge flux at the bottom of the HPM profile. This was achieved by updating or modifying the pressure head profile in the HPM profile after every MODFLOW time step. The effectiveness and the applicability of the new coupling algorithm were evaluated using different case studies. The new coupling algorithm is effective in eliminating unrealistic sudden variations in the bottom flux in the HPM profiles.
Volume
17
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback