Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Highly Efficient Photoelectrochemical Water Oxidation Using Cs2AgMCl6 (M = In,Bi,Sb) Halide Double Perovskites
 
  • Details
Options

Highly Efficient Photoelectrochemical Water Oxidation Using Cs2AgMCl6 (M = In,Bi,Sb) Halide Double Perovskites

Date Issued
01-04-2023
Author(s)
Sikarwar, Poonam
Koneri, Indraja Thrivikram
Appadurai, Tamilselvan
Aravind Kumar Chandiran 
Indian Institute of Technology, Madras
DOI
10.1103/PhysRevApplied.19.044083
Abstract
In this work, stable Cs2AgMCl6(M = Bi,In,Sb) double perovskite materials are successfully employed as photoanodes for solar water oxidation. These materials show an extraordinary oxidative stability, where Cs2AgInCl6 and Cs2AgBiCl6 are stable between 0 and 1.2 V (vs Ag-AgCl) and Cs2AgSbCl6 between 0 and 0.75 V (vs Ag-AgCl) over 100 cycles of electrochemical cycling. This enables us to employ these materials for photoelectrochemical (PEC) water oxidation in CH3CN and H2O, with and without IrOx cocatalyst. All three materials show PEC activity, with Cs2AgInCl6 showing the highest performance. At 1.23 V (vs a reversible hydrogen electrode), a photocurrent density of 0.5 mA cm-2 is observed, and with an applied overpotential of 600 mV, the photocurrent increases to about 0.75 mA cm-2. From the band gap of Cs2AgInCl6, the estimated theoretical maximum current is around 0.82 mA cm-2. So, Cs2AgInCl6-coated IrOx gives nearly 60% and about 90% of the theoretical maximum photocurrent at zero bias and at an applied overpotential, respectively. The device is shown to be stable and reproducibility is confirmed.
Volume
19
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback