Options
Supersonic impinging jet noise reduction using co-axial swirler
Date Issued
21-08-2016
Author(s)
Balakrishnan, P.
Indian Institute of Technology, Madras
Abstract
Supersonic impinging jet noise reduction is an important problem, especially in STOL aircraft, VTOL aircraft and rockets. These types of impinging jets generate a larger amount of noise and highly unsteady flows, which lead to noisy environment, posing a hazard to humans and materials in the proximity. The present study is carried out on supersonic impinging cold jets for nozzle pressure ratio (NPR) values of 2 and 5 with nozzle to plate distance (x / D) of 5, at different swirl numbers. The swirl flows are generated using co-axial curved blades and the results were compared with non-swirl or free jets. The vane angles considered here are 20°, 40°, 60° and the swirl numbers ranged from 0 to 1.31. At NPR 2, the weak swirl number of 0.27 reduced the OASPL level by around 7 dB compared to non-swirl jets. The non-swirl jet emitted impinging tones at NPR 5 and the swirl jet eliminated the impinging tones. At a high swirl number of 1.31, at NPR 5, OASPL is lowered by around 12 dB compared to non-swirl jets. The flow visualization study shows that the swirl disintegrates the repeated shocks and reduces the length of the shock cell system.