Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Q<inf>#</inf>-matrices and Q<inf>†</inf>-matrices: two extensions of the Q-matrix concept
 
  • Details
Options

Q<inf>#</inf>-matrices and Q<inf>†</inf>-matrices: two extensions of the Q-matrix concept

Date Issued
01-01-2022
Author(s)
K. C. Sivakumar 
Indian Institute of Technology, Madras
Sushmitha, P.
Tsatsomeros, M.
DOI
10.1080/03081087.2021.1975620
Abstract
A real square matrix A is called a Q-matrix if the linear complementarity problem LCP(A, q) has a solution for all (Formula presented.). This means that for every vector q, there exists a vector x ≥ 0 such that y = Ax + q ≥ 0 and x T y = 0. Two new classes of matrices are studied, namely the Q #-matrices and (Formula presented.) -matrices. If for every vector q ∈ R(A), there exists a vector x ∈ R(A) satisfying x ≥ 0, y = Ax + q ≥ 0 and x T y = 0, then A is a Q #-matrix. If the vector x satisfying the above properties is instead required to be in R(A T), then A is a (Formula presented.) -matrix. Properties of these classes of matrices and their relationship with the class of Q-matrices are studied.
Volume
70
Subjects
  • -matrix

  • 15A09

  • 90C33

  • group inverse

  • Linear complementarit...

  • P-matrix

  • Q -matrix #

  • Q-matrix

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback