Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system
 
  • Details
Options

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system

Date Issued
01-04-2006
Author(s)
Loganathan, M.
Manivannan P. V. 
Indian Institute of Technology, Madras
A Ramesh 
Indian Institute of Technology, Madras
Abstract
Simple and cost effective electronically controlled injection systems have to be developed to combat the problem of urban pollution. In this work an electronically controlled fuel injection system developed in the Internal Combustion Engine Laboratory of Indian Institute of Technology Madras has been tested in detail on a two-stroke SI engine. The system is fitted on the intake manifold of a single cylinder, air cooled two-stroke scooter engine. Tests have been done at 3000 rpm and 4000 rpm at different throttle positions. The optimum injector pulse widths for thermal efficiency, lowest HC emissions and highest power are all different. The maximum brake thermal efficiency values are 22.6% and 23% at 3000 and 4000 rpm respectively. At a power output of 3 kW and 4000 rpm the brake thermal efficiency is about 21% for the carbureted engine. It increases to 23% with the fuel injection system. HC emissions are considerably lower than the carbureted version at all operating conditions and speeds. The engine can work with leaner mixtures with the injection system in general as compared to the carburetor. The maximum power increases with the injection system. The developed system can be used for mapping the engine for the development of software for injection system control.
Volume
13
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback